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2ETH Zürich, Swiss Data Science Center, Empa

Abstract

Diffusion models are generative models with impressive
text-to-image synthesis capabilities and have spurred a new
wave of creative methods for classical machine learning
tasks. However, the best way to harness the perceptual
knowledge of these generative models for visual tasks is
still an open question. Specifically, it is unclear how to
use the prompting interface when applying diffusion back-
bones to vision tasks. We find that automatically gener-
ated captions can improve text-image alignment and sig-
nificantly enhance a model’s cross-attention maps, leading
to better perceptual performance. Our approach improves
upon the current SOTA in diffusion-based semantic segmen-
tation on ADE20K and the current overall SOTA in depth
estimation on NYUv2. Furthermore, our method general-
izes to the cross-domain setting; we use model personal-
ization and caption modifications to align our model to the
target domain and find improvements over unaligned base-
lines. Our object detection model, trained on Pascal VOC,
achieves SOTA results on Watercolor2K. Our segmentation
method, trained on Cityscapes, achieves SOTA results on
Dark Zurich-val and Nighttime Driving.

1. Introduction
Diffusion models have set the state-of-the-art for image
generation [30, 33, 36, 48]. Recently, a few works have
shown diffusion pre-trained backbones have a strong prior
for scene understanding that allows them to perform well in
advanced discriminative vision tasks, such as semantic seg-
mentation and monocular depth estimation [16, 49]. Unlike
contrastive vision language models (like CLIP) [21, 25, 29],
generative models have a causal relationship with text, in
which text guides image generation. In latent diffusion
models, text prompts control the denoising U-Net [34],
moving the image latent in a semantically meaningful di-

*Equal contribution.

Diffusion-Pretrained 
Vision Model

“a dog and a bird”

”in a watercolor style”

Captioner

Caption Modifier

+

Single-domain

Cross-domain

Depth Estimation

Segmentation

Object Detection

Figure 1. Text-Aligned Diffusion Perception (TADP). In TADP,
image captions align the text prompts and images passed to
diffusion-based vision models. In cross-domain tasks, target do-
main information is incorporated into the prompt to boost perfor-
mance.

rection [5].
We explore this relationship and find that text-image

alignment significantly improves the performance of
diffusion-based perception. We then investigate text-target
domain alignment in cross-domain vision tasks, finding that
aligning the text with the target domain while training on the
source domain can improve a model’s target domain perfor-
mance (Fig. 1).

We first study prompting for diffusion-based perceptual
models and find that increasing text-image alignment im-
proves semantic segmentation and depth estimation perfor-
mance. We hypothesize that unaligned text prompts can in-
troduce semantic shifts to the feature maps of the diffusion
model [5] and that these shifts can make it more difficult
for the task-specific head to solve the target task. Specifi-
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cally, we ask whether unaligned text prompts, such as aver-
aging class-specific sentence embeddings ([29, 49]), hinder
performance by interfering with feature maps through the
cross-attention mechanism. Through ablation experiments
on Pascal VOC2012 segmentation [13] and ADE20K [51],
we find that off-target and missing class names degrade im-
age segmentation quality. We find automated image cap-
tioning [24] achieves sufficient text-image alignment for
perception. Our approach (along with latent representation
scaling, see Sec. 4.1) improves performance for semantic
segmentation on Pascal and ADE20k by 4.0 mIoU and 1.7
mIoU, respectively, and depth estimation on NYUv2 [40]
by 0.2 RMSE (+8% relative) setting the new SOTA.

Next, we focus on cross-domain adaptation: can appro-
priate image captioning help visual perception when the
model is trained in one domain and tested on a different
domain? We find that training models on the source do-
main with the appropriate prompting strategy can lead to
excellent unsupervised cross-domain performance on sev-
eral benchmarks. We evaluate our cross-domain method on
Pascal VOC [12, 13] to Watercolor2k (W2K) and Comic2k
(C2K) [20] for object detection and Cityscapes (CS) [8] to
Dark Zurich (DZ) [37] and Nighttime (ND) Driving [9] for
semantic segmentation. We explore varying degrees of text-
target domain alignment and find that improved alignment
results in better performance. We also demonstrate using
two diffusion personalization methods, Textual Inversion
[15] and DreamBooth [35], for better target domain align-
ment and performance. We find that diffusion pre-training
is sufficient to achieve SOTA (+5.8 mIoU on CS→DZ, +4.0
mIoU on CS→ND, +0.7 mIoU on VOC→W2k) or near
SOTA results on all cross-domain datasets with no text-
target domain alignment, and including our best text-target
domain alignment method further improves +1.4 AP on Wa-
tercolor2k, +2.1 AP on Comic2k, and +3.3 mIoU on Night-
time Driving.

Overall, our contributions are as follows:
• We analyze the effects of text-image alignment on

diffusion-pretrained vision models and use our in-
sights to improve performance for semantic segmen-
tation and depth estimation.

• We show that diffusion-based perception generalizes
well across domains and that text-target domain align-
ment is important to improve performance.

• We show how to use diffusion personalization meth-
ods to close the domain gap between a source and tar-
get domain.

2. Related Work

2.1. Diffusion models for single-domain vision tasks

Diffusion models are trained to reverse a step-wise forward
noising process. Once trained, they can generate highly re-

alistic images from pure noise [30, 33, 36, 48]. To con-
trol image generation, diffusion models are trained with text
prompts/captions that guide the diffusion process. These
prompts are passed through a text encoder to generate text
embeddings that are incorporated into the reverse diffusion
process via cross-attention layers.

Recently, some works have explored using diffusion
models for discriminative vision tasks. This can be done
by either utilizing the diffusion model as a backbone for the
task [16, 49] or through fine-tuning the diffusion model for
a specific task and then using it to generate synthetic data
for a downstream model [2, 46]. Our work falls into the
first category; we use the diffusion model as a backbone for
downstream vision tasks.

VPD [49] encodes images into latent representations and
passes them through one step of the Stable Diffusion model.
The cross-attention maps, multi-scale features, and output
latent code are concatenated and passed to a task-specific
head. Text prompts influence all these maps through the
cross-attention mechanism, which guides the reverse dif-
fusion process. The cross-attention maps are incorporated
into the multi-scale feature maps and the output latent rep-
resentation. The text guides the diffusion process and can
accordingly shift the latent representation in semantic di-
rections [1, 5, 15, 17]. The details of how VPD uses the
prompting interface are described in Sec. 3. In short, VPD
uses unaligned text prompts. In our work, we show how
aligning the text to the image,by using a captioner, can sig-
nificantly improve semantic segmentation and depth esti-
mation performance.

2.2. Image captioning

CLIP [29] introduced a novel learning paradigm to align
images with their captions. Shortly after, the LAION-5B
dataset [39] was released with 5B image-text pairs; this
dataset was used to train Stable Diffusion. We hypothe-
size that text-image alignment is important for diffusion-
pretrained vision models. However, images used in ad-
vanced vision tasks (like segmentation and depth estima-
tion) are not naturally paired with text captions. To obtain
image-aligned captions, we use BLIP-2 [24], a model that
inverts the CLIP latent space to generate captions for novel
images.

2.3. Diffusion models for cross-domain vision tasks

A few works explore the cross-domain setting with diffu-
sion models [2, 16]. Benigmim et al. [2] use a diffusion
model to generate data for a downstream unsupervised do-
main adaptation (UDA) architecture. In [16], the diffusion
backbone is frozen, and the segmentation head is trained
with a consistency loss with category and scene prompts
guiding the latent code towards target cross-domains. Sim-
ilar to VPD, the category prompts consist of token embed-
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dings for all classes present in the dataset, irrespective of
their presence in any specific image. The consistency loss
forces the model to predict the same output mask for all the
different scene prompts, helping the segmentation head be-
come invariant to the scene type. In contrast, our approach
uses image captions to better align the text to the image and
caption modifiers to further align the text to the target do-
main. We do not use a consistency loss. Instead, we train
the diffusion model backbone and task head on the source
domain data with and without incorporating the style of the
target domain in the caption. We find that better alignment
with the target domain (i.e. target domain information in-
corporated in the prompt) results in better cross-domain per-
formance.

2.4. Cross-domain object detection

Cross-domain object detection can be divided into multi-
ple subcategories, depending on what data / labels are at
train / test time available. Unsupervised domain adaptation
objection detection (UDAOD) tries to improve detection
performance by training on unlabelled target domain data
with approaches such as self-training [10, 41], adversarial
distribution alignment [50] or generating pseudo labels for
self-training [22]. Cross-domain weakly supervised object
detection (CDWSOD) assumes the availability of image-
level annotations at training time and utilizes pseudo label-
ing [20, 28], alignment [47] or correspondence mining [18].
Recently, [42] used CLIP [29] for Single Domain General-
ization, which aims to generalize from a single domain to
multiple unseen target domains. Our text-based method de-
fines a new category of cross-domain object detection that
tries to adapt from a single source to an unseen target do-
main by only having the broad semantic context of the target
domain (e.g., foggy/night/comic/watercolor) as text input to
our method. When we incorporate model personalization,
our method can be considered a UDAOD method since we
train a token based on unlabelled images from the target do-
main.

3. Methods
Stable Diffusion [33]. The text-to-image Stable Diffusion
model is composed of four networks: an encoder E , a con-
ditional denoising autoencoder (a UNet in Stable Diffusion)
ϵθ, a language encoder τθ (the CLIP text encoder in Stable
Diffusion), and a decoder D. E and D are trained before
ϵθ, such that D(E(x)) = x̃ ≈ x. Training ϵθ is com-
posed of a pre-defined forward process and a learned reverse
process, the reverse process is learned using LAION-400M
[38], a dataset of 400 million images (x ∈ X) and captions
(y ∈ Y ). In the forward process, an image x is encoded
into a latent z0 = E(x), and t steps of a forward noise pro-
cess are executed to generate a noised latent zt. Then, to
learn the reverse process, the latent zt is passed to the de-

noising autoencoder ϵθ, along with the time-step t and the
image caption’s representation C = τθ(y). τθ adds infor-
mation about y to ϵθ using a cross-attention mechanism, in
which the query is derived from the image, and the key and
value are transformations of the caption representation. The
model ϵθ is trained to predict the noise added to the latent
in step t of the forward process:

LLDM := EE(x),y,ϵ∼N (0,1),t

[
∥ϵ−ϵθ(zt, t, τθ(y))∥22

]
, (1)

where t ∈ {0, ..., T}. During generation, a pure noise la-
tent zT and a user-specified prompt are passed through the
denoising autoencoder ϵθ for T steps and decoded D(z0) to
generate an image-guided by the text prompt.

VPD [49]. uses ϵθ as a generatively pre-trained back-
bone for perceptual vision tasks. An image latent z0 = E(x)
and a text-derived conditioning Cavg are passed through the
last step of the denoising process ϵθ(z0, 0, C). The cross-
attention maps A, and the multi-scale feature maps F of the
UNet are concatenated V = A ⊕ F and passed to a task-
specific head H to generate a prediction p̂ = H(V ). The
backbone ϵθ and head H are trained with a task-specific loss
LH(p̂, p). In order to generate Cavg in VPD, a list of 80 sen-
tence templates for each class of interest (such as “a <ad-
jective> photo of a <class name>”) are passed through the
CLIP text encoder (similar to [29]). We use B to denote the
set of class names in a dataset. For a specific class (b ∈ B),
the CLIP text encoder returns a 80×N×D tensor, where N
is the maximum number of tokens over all the templates and
D is 768 (the dimension of each token embedding). Shorter
sentences are padded with EOS tokens to fill out the max
number of tokens. The first EOS token from each sentence
template is averaged and used as the representative embed-
ding for the class such that C ∈ R|B|×768. For semantic
segmentation, all of the class embeddings, irrespective of
presence in the image, are passed to the cross-attention lay-
ers. Only the class embedding of the room type is passed to
the cross-attention layers for depth estimation.

3.1. Text-Aligned Diffusion Perception (TADP)

Our work proposes a novel method for prompting diffusion-
pretrained perception models. Specifically, we explore dif-
ferent prompting methods G to generate C. In the single-
domain setting, we show the effectiveness of a method
that uses BLIP-2 [24], an image captioning algorithm,
to generate a caption as the conditioning for the model:
G(x) = ỹ → C. We then extend our method to the cross-
domain setting by incorporating target domain information
to C = C + M(P)s, where M is a caption modifier that
takes target domain information P as input and outputs
a caption modification M(P)s and a model modification
M(P)ϵθ . In Sec. 4, we analyze the text-image interface
of the diffusion model by varying the captioner G and cap-
tion modifier M in a systematic manner for three different
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Figure 2. Overview of TADP. We encode images using the latent scaling (LS) described in Sec. 4.1. We experiment with several prompting
strategies and evaluate their impact on downstream vision task performance. Our method concatenates the cross-attention maps and the
multi-scale feature maps before passing them to the vision-specific decoder. In the blue box, we show three single-domain captioning
strategies with differing levels of text-image alignment. We propose using BLIP [24] captioning to improve image-text alignment. We
extend our analysis to the cross-domain setting (yellow box), exploring whether aligning the source domain text captions to the target
domain may impact model performance by appending caption modifiers to image captions generated in the source domain and find model
personalization modifiers (Textual Inversion/Dreambooth) work best.

Method Avg TA LS G OT mIoUss

VPD [49] ✓ ✓ ✓ 82.34
VPD(LS) ✓ ✓ 83.06
Class Embs ✓ ✓ 82.72
Class Names ✓ ✓ 84.08
TADP-0 ✓ ✓ 86.36
TADP-20 ✓ ✓ 86.19
TADP-40 ✓ ✓ 87.11
TADP(NO)-20 ✓ 86.35

TADP-Oracle ✓ 89.85

Table 1. Prompting for Pascal VOC2012 Segmentation. We re-
port the single scale validation mIoU for Pascal experiments. Avg:
EOS token averaging, TA: Text Adapter, LS: Latent Scaling, G:
Grammar, OT: Off-target information. For our method, we indi-
cate the minimum length of the BLIP caption with TADP-X and
nouns only with (NO).

vision tasks: semantic segmentation, object detection, and
monocular depth estimation. Our method and experiments
are presented in Fig. 2. For implementation details, refer to
Sec. C.

4. Results
4.1. Latent scaling

Before exploring image-text alignment, we apply latent
scaling to encoded images (Appendix G of Rombach et al.
[33]). This normalizes the image latents to have a standard

normal distribution. We pre-compute the scaling factor and
fixate it to 0.18215. We find that latent scaling improves
performance using VPD’s original prompting scheme for
segmentation and depth estimation (Fig. 3). Specifically,
latent scaling improves ∼0.8% mIoU on Pascal, ∼0.3%
mIoU on ADE20K, and a relative ∼5.5% RMSE on NYUv2
Depth (Fig. 3)

4.2. Single-domain alignment

Average EOS Tokens. We scrutinize the use of averaged
EOS tokens for C (see Sec. 3). This method was intro-
duced in CLIP [29] for generating a class-specific text rep-
resentation for zero-shot classification and is also used in
VPD to define representations for the classes in a dataset.
We hypothesize the usage of the text prompting interface in
this manner is mismatched with how diffusion models use
text in image generation. While averaging is sensible when
measuring cosine similarities in the CLIP latent space, it is
unsuitable in diffusion models, where the text guides the
diffusion process through cross-attention. In our qualitative
analysis, we find that averaging degrades the cross-attention
maps (Fig. 4). Instead of averaging, we first explore using
CLIP to embed each class name independently and use the
tokens corresponding to the actual word (not the EOS to-
ken) and pass this as input to the cross-attention layer:

GClassEmbs(B) = concat(CLIP(b)|b ∈ B) → CClassEmbs (2)

Second, we explore a generic prompt, a string of class
names separated by spaces:

GClassNames(B) = {‘ ’ + b|b ∈ B} → CClassNames (3)
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Figure 3. Effects of Latent Scaling (LS) and BLIP caption min-
imum length. We report mIoU for Pascal (left) and ADE20K
(center) and RMSE for NYUv2 depth (right). (Top) Latent scal-
ing improves performance on Pascal ∼0.8 mIoU (higher is bet-
ter), ∼0.3 mIoU, and ∼5.5% relative RMSE (lower is better).
(Bottom) We see a similar effect for BLIP minimum token length,
with longer captions performing better, improving ∼0.8 mIoU on
Pascal VOC2012, ∼0.9 mIoU on ADE20K, and ∼0.6% relative
RMSE

These prompts are similar to the ones used for template-
averaged embeddings w.r.t. overall text-image alignment
but do not incorporate averaging. We evaluate these
variations on Pascal VOC2012 segmentation. We find
that CClassNames improves performance by 1.0 mIoU, but
CClassEmbs reduces performance by 0.3 mIoU (see Tab. 1).

TADP. To align the diffusion model text input to the im-
age, we use BLIP-2 [24] to generate captions for every im-
age in our single-domain datasets (Pascal, ADE20K, and
NYUv2).

GTADP(x) = BLIP-2(x) → CTADP(x) (4)

BLIP-2 is trained to produce image-aligned text captions
and is designed around the CLIP latent space. How-
ever, other vision-language algorithms that produce cap-
tions could also be used. We find that these text captions
improve performance in all datasets and tasks (Tabs. 1, 2,
3). Performance improves on Pascal segmentation by ∼4%
mIoU, ADE20K by ∼1.4% mIoU, and NYUv2 Depth by a
relative RMSE improvement of 4%. We see stronger effects
on the fast schedules for ADE20K with an improvement of
∼5 mIoU at (4k), ∼2.4 mIoU (8K). On NYUv2 Depth, we
see a smaller gain on the fast schedule ∼2.4%. All numbers
are reported relative to VPD with latent scaling.

We perform some ablations to analyze what aspects of
the captions are important. We explore the minimum token
number hyperparameter for BLIP-2 to explore if longer cap-
tions can produce more useful feature maps for the down-
stream task. We try a minimum token number of 0, 20, and
40 tokens (denoted as CTADP-N) and find small but consis-
tent gains with longer captions, resulting on average 0.75%

Method #Params Crop mIoUss mIoUms

self-supervised pre-training
EVA [14] 1.01B 8962 61.2 61.5
InternImage [44] 1.08B 8962 62.5 62.9

multi-modal pre-training
CLIP-ViT-B [31] 105M 6402 50.6 51.3
ViT-Adapter [7] 571M 8962 61.2 61.5
BEiT-3 [45] 1.01B 8962 62.0 62.8
ONE-PEACE [43] 1.52B 8962 62.0 63.0

diffusion-based pre-training
VPDA32 [49] 862M 5122 53.7 54.6
VPD(R) 862M 5122 53.1 54.2
VPD(LS) 862M 5122 53.7 54.4
TADP-40 (Ours) 862M 5122 54.8 55.9

TADP-Oracle 862M 5122 72.0 -

Table 2. Semantic segmentation with different methods
for ADE20k. Our method (green) achieves SOTA within the
diffusion-pretrained models category. The results of our oracle in-
dicate the potential of diffusion-based models for future research
as it is significantly higher than the overall SOTA (highlighted in
yellow).

Method RMSE↓ δ1 ↑ δ2 ↑ δ3 ↑ REL ↓ log10 ↓
default schedule

SwinV2-L [26] 0.287 0.949 0.994 0.999 0.083 0.035
AiT [27] 0.275 0.954 0.994 0.999 0.076 0.033
ZoeDepth [3] 0.270 0.955 0.995 0.999 0.075 0.032
VPD [49] 0.254 0.964 0.995 0.999 0.069 0.030

VPD(R) 0.248 0.965 0.995 0.999 0.068 0.029
VPD(LS) 0.235 0.971 0.996 0.999 0.064 0.028
TADP-40 0.225 0.976 0.997 0.999 0.062 0.027

fast schedule, 1 epoch

VPD 0.349 0.909 0.989 0.998 0.098 0.043
VPD(R) 0.340 0.910 0.987 0.997 0.100 0.042
VPD(LS) 0.332 0.926 0.992 0.998 0.097 0.041
TADP-0 0.328 0.935 0.993 0.999 0.082 0.038
TADP(TA)-0 0.332 0.940 0.993 0.999 0.081 0.036

Table 3. Depth estimation in NYUv2. We find latent scaling
accounts for a relative gain of ∼ 5.5% on the RMSE metric. Ad-
ditionally, image-text alignment improves ∼ 4% relative on the
RMSE metric. A minimum caption length of 40 tokens performs
the best.

relative gain for 40 tokens vs. 0 tokens. (Fig. 3). Next,
we ablate the Pascal CTADP-20 captions to understand what
in the caption is necessary for the performance gains we
observe. We use NLTK [4] to filter for the nouns in the
captions. In the CTADP(NO)-20 nouns-only caption setting, we
achieve 86.4% mIoU, similar to 86.2% mIoU with CTADP-20
(Tab. 1), suggesting nouns are sufficient.

Oracle. This insight about nouns leads us to ask if an
oracle caption, in which all the object class names in an
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Figure 4. Cross-attention maps for different types of prompting (before training). We compare the cross-attention maps for four types
of prompting: oracle, BLIP, averaged template EOS tokens, and class names as a space-separated string. The cross-attention maps for
different heads at all different scales are upsampled to 64x64 and averaged. When comparing Averaged Template EOS and Class Names,
we see (qualitatively) averaging degrades the quality of the cross-attention maps. Furthermore, we find that class names that are not present
in the image can have highly localized attention maps (e.g., ‘bottle’).

image are provided as a caption, can improve performance
further. We define B(x) as the set of class names present in
image x.

GOracle(x) = {‘ ’ + b|b ∈ B(x)} → COracle(x) (5)

While this is not a realistic setting, it serves as an approx-
imate upper bound on performance for our method on the
segmentation task. We find a large improvement in per-
formance in segmentation, achieving 89% mIoU on Pascal
and 72.2% mIoU on ADE20K. For depth estimation, multi-
class segmentation masks are only provided for a smaller
subset of the images, so we cannot generate a comparable
oracle. We perform ablations on the oracle captions to eval-
uate the model’s sensitivity to alignment. For ADE20K,
on the 4k iteration schedule, we modify the oracle captions
by randomly adding and removing classes such that the re-
call and precision are at 0.5, 0.75, and 1.0 (independently)
(Tab. S2). We find that both precision and recall have an ef-
fect, but recall is significantly more important. When recall
is lower (0.50), improving precision has very little impact
(<1% mIoU). However, as recall increases to 0.75 and 1.00,
precision has progressively larger impacts (∼3% mIoU and
∼7% mIoU). In contrast, recall has large impacts at every

precision level: 0.5 - (∼6% mIoU), 0.75 - (∼9% mIoU),
and 1.00 - (∼13% mIoU). We find that BLIP-2 captioning
performs similarly to a precision of 1.00 and a recall of 0.5
(Tab. 2).

4.3. Cross-domain alignment

Next, we ask if text-image alignment can benefit cross-
domain tasks. In cross-domain, we train a model on a
source domain and test it on a different target domain. There
are two aspects of alignment in the cross-domain setting:
the first is also present in single-domain, which is image-
text alignment; the second is unique to the cross-domain
setting, which is text-target domain alignment. The sec-
ond is challenging because there is a large domain shift be-
tween the source and target domain. Our intuition is that
while the model has no information on the target domain
from the training images, an appropriate text prompt may
carry some general information about the target domain. In
our cross-domain experiments, we focus on the text-target
domain alignment and use GTADP for image-text alignment
(following our insights from the single-domain setting).

Training. Our experiments in this setting are designed
in the following manner: we train a diffusion model on

6



Method
Dark Zurich-val ND

mIoU mIoU

DAFormer [19] – 54.1
Refign-DAFormer [6] – 56.8
PTDiffSeg [16] 37.0 –

TADPnull 42.8 57.5
TADPsimple 39.1 56.9
TADPTextualInversion 41.4 60.8
TADPDreamBooth 38.9 60.4

TADPNearbyDomain 41.9 56.9
TADPUnrelatedDomain 42.3 55.1

Table 4. Cross-domain semantic segmentation. Cityscapes
(CD) to Dark Zurich (DZ) val and Nighttime Driving (ND). We
report the mIoU. Our method sets a new SOTA for DarkZurich
and Nighttime Driving.

the source domain captions CTADP(x). With these source
domain captions, we experiment with four different cap-
tion modifications (each increasing in alignment to the tar-
get domain), a null Mnull(P) caption modification where
Mnull(P)s = ∅ and Mnull(P)ϵθ = ∅, a simple Msimple(P)
caption modifier where Msimple(P)s is a hand-crafted string
describing the style of the target domain appended to the
end and Msimple(P)ϵθ = ∅, a Textual Inversion [15]
MTI(P) caption modifier where the output MTI(P)s is a
learned Textual Inversion token <*> and MTI(P)ϵθ = ∅,
and a DreamBooth [35] MDB(P) caption modifier where
MDB(P)s is a learned DreamBooth token <SKS> and
MDB(P)ϵθ is a DreamBoothed diffusion backbone. We
also include two additional control experiments. In the first,
Mud(P) an unrelated target domain style is appended to
the end of the string. In the second, Mnd(P) a nearby but
a different target domain style is appended to the caption.
MTI(P) and MDB(P) require more information than the
other methods, such that P represents a subset of unlabelled
images from the target domain.

Testing. When testing the trained models on the target
domain images, we want to use the same captioning mod-
ification for the test images as in the training setup. How-
ever, GTADP introduces a confound since it naturally incor-
porates target domain information. For example, GTADP(x)
might produce the caption “a watercolor painting of a
dog and a bird” for an image from the Watercolor20K
dataset. Using the Msimple(P) captioning modification on
this prompt would introduce redundant information and
would not match the caption format used during training. In
order to remove target domain information and get a plain
caption that can be modified in the same manner as in the
training data, we use GPT-3.5 to remove all mentions of the

Method
Watercolor2k Comic2k
AP AP50 AP AP50

Cross domain weakly supervised object detection

PLGE [28] – 56.5 – 41.7
ICCM [18] – 57.4 – 37.1
H2FA R-CNN [47] – 59.9 – 46.4

Unsupervised domain adaptation object detection

ADDA [41] – 49.8 – 23.8
MCAR [50] – 56.0 – 33.5
UMT [10] – 58.1 – –
DASS-Detector (extra data) [41] – 71.5 – 64.2

TADPnull 42.1 72.1 31.1 57.4
TADPsimple 43.5 72.2 31.9 56.6
TADPTextualInversion 43.2 72.2 33.2 57.4
TADPDreamBooth 43.2 72.2 32.9 56.9

TADPNearbyDomain 42.0 71.5 31.8 56.4
TADPUnrelatedDomain 42.2 71.9 32.0 55.9

Table 5. Cross-domain object detection. Pascal VOC to Water-
color2k and Comic2k. We report the AP and AP50. Our method
sets a new SOTA for Watercolor2K.

target domain shift. For example, after using GPT-3.5 to
remove mentions of the watercolor style in the above sen-
tence, we are left with “an image of a bird and a dog”. With
these GPT-3.5 cleaned captions, we can match the caption
modifications used during training when evaluating test im-
ages. This caption-cleaning strategy allows us to control
how target domain information is included in the test image
captions.

4.3.1 Evaluation

We evaluate cross-domain transfer on several datasets. We
train our model on Pascal VOC [12, 13] object detection
and evaluate on Watercolor2K (W2K) [20] and Comic2K
(C2K) [20]. We also train our model on the Cityscapes [8]
dataset and evaluate on the Nighttime Driving (ND) [9] and
Dark Zurich-val (DZ-val) [37] datasets. We show all results
in Tab. 5.

Null caption modifier. The null captions have no tar-
get domain information. In this setting, the model is trained
with captions with no target domain information and tested
with GPT-3.5 cleaned target domain captions. We find
diffusion pre-training to be extraordinarily powerful on its
own, with just plain captions (no target domain informa-
tion); the model already achieves SOTA on VOC→W2K
with 72.1 AP50, SOTA on CD→DZ-val with 42.8 mIoU
and SOTA on CD→ND with 60.8 mIoU. AP. Our model
performs better than the current SOTA [41] on VOC→W2K
and worse on VOC→C2K (highlighted in yellow in Tab. 5).
However, [41] uses a large extra training dataset from the
target (comic) domain, so we highlight in bold our results
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in Tab. 5 to show they outperform all other methods that
use only images in C2K as examples from the target do-
main. Furthermore, these results are with a lightweight FPN
[23] head, in contrast to other competitive methods like Re-
fign [6], which uses a heavier decoder head. We use the
plain captions as our baseline for the following sections; the
deltas are given relative to the numbers in this setting.

Simple caption modifier. We then add target domain in-
formation to our captions by prepending the target domain’s
semantic shift to the generic captions. These caption mod-
ifiers are hand-crafted, for example, “a dog and a bird” be-
comes “a X style painting of a dog and a bird” (where X is
watercolor for W2K and comic for C2K) and “a dark night
photo of a dog and a bird” for DZ. We achieve 72.2 (+0.1)
AP50 on W2K, 56.6 (-0.8) AP50 on C2K, 39.1 (-3.7) mIoU
on DZ-val, and 56.9 (-0.6) mIoU on ND.

Textual Inversion caption modifier. Textual inversion
[15] is a method that learns a target concept (an object or
style) from a set of images and encodes it into the embed-
ding of a token. We learn a novel token from target domain
image samples to further increase image-text alignment (for
details, see Sec. C.1). In this setting, the sentence template
becomes “a <token> style painting of a dog and a bird”.
Our performance improves to 60.8 (+3.3) mIoU on ND and
72.2 (+0.1) AP50 on W2K. Our method performs worse on
DZ-val 41.4 (-1.4) mIoU, and has no impact on C2K 57.4
(+0.0) AP50. However, on W2K and C2K, our method im-
proves under the AP metric to 43.2 (1.1) AP and 33.2 (+2.1)
AP.

DreamBooth caption modifier. DreamBooth-ing [35]
is a more compute-intensive method for achieving the same
goal as textual inversion. Along with learning a new to-
ken, the stable-diffusion backbone itself is fine-tuned with
a set of target domain images (for details, see Sec. C.1). We
swap the stable diffusion backbone with the DreamBooth-
ed backbone before training. We use the same template as
in textual inversion. On W2K, we improve performance to
72.2 (+0.1) AP50 and 43.2 (+1.1) AP. On C2K, our perfor-
mance is 56.9 (-0.6) AP50 and 32.9 (+1.8) AP. On DZ-val
and ND we achieve 38.9 (-3.9) mIoU and 60.4 (+2.9) mIoU
on ND.

Ablations We ablate our target domain alignment strat-
egy by introducing unrelated and nearby target-domain
style modifications. For example, this would be “a dash-
cam photo of a dog and a bird” (unrelated) and “a con-
structivism painting of a dog and a bird” (nearby) for the
W2K and C2K datasets. “A watercolor painting of a car
on the street” (unrelated) and “a foggy photo of a car on the
street” for the ND and DZ-val datasets. We find these off-
target domains reduce performance on all datasets. On C2K
(AP50), the nearby and unrelated domain modifier reduced
performance to 56.4 (-1.0) and 55.9 (-1.5) AP50. On W2K
(AP50), performance decreased to 71.5 (-0.6) and 71.9 (-

0.2). On DZ-val, performance falls to 41.9 (-0.9) and 42.33
(-0.5) mIoU. Finally, on ND, performance falls to 56.9 (-
0.6) and 55.1 (-2.4) mIoU.

5. Discussion
We present the first systematic exploration of the impact of
image-text alignment on diffusion-based perception tasks.
The method we propose for image-text alignment is general,
fully automated, and can be applied to any diffusion-based
perception model. We investigate whether similar princi-
ples apply in the cross-domain setting and find that align-
ment towards the target domain during training improves
downstream cross-domain performance. In this work, we
develop several insights into the nature of the text-image
interface in diffusion models. The first finding is that EOS
token averaging, a method borrowed from prior work re-
lated to CLIP, does not work as effectively with diffusion
models. In addition, our oracle ablation experiments indi-
cate that our diffusion pre-trained segmentation model is
particularly sensitive to missing classes and less sensitive
to off-target classes (reduced precision), and both have neg-
ative impacts. Our proposed method shows how using a
captioner (BLIP-2), which has the benefit of being open vo-
cabulary, high precision, and downstream task agnostic, im-
proves performance significantly. Future work may explore
closed vocabulary captioners that are more task-specific in
order to get closer to oracle-level performance. Our results
show that aligning text prompts to the image is important
in identifying/generating good multi-scale feature maps for
the downstream segmentation head. In addition, it implies
that the multi-scale features and latent representations do
not naturally identify semantic concepts without the guid-
ance of the text in diffusion models. We also find that
diffusion models can be used effectively for cross-domain
tasks. Because of its strong generalization performance,
our model performs well across domains using the null cap-
tioner. On average, we find that target domain alignment
can help with cross-domain performance and misalignment
leads to worse performance. Capturing information about
the target domain in words alone can be difficult. For these
cases we show, that model personalization through Textual
Inversion or Dreambooth can bridge the gap without requir-
ing labeled data. Future work could explore how to expand
our framework to generalize to multiple unseen domains.
Our work analyzes and successfully exploits the text-image
interface in diffusion pre-trained models for the downstream
vision tasks of semantic segmentation, monocular depth es-
timation, and object detection.
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Text-image Alignment for Diffusion-based Perception
Supplementary Materials

A. Off-target class name analysis
Qualitative image-to-image variation analysis. We present a qualitative and quantitative analysis on the effect of off-target
class names added to the prompt. In Fig. S1, we use the stable diffusion image to image (img2img) variation pipeline
(with the original Stable Diffusion 1.5 weights) to qualitatively analyze the effects of prompts with off-target classes. The
img2img variation pipeline encodes a real image into a latent representation, adds a user-specified amount of noise to the
latent representation, and de-noises it (according to a user-specified prompt) to generate a variation on the original image.
The amount of noise added is dictated by a strength ratio indicating how much variation should occur. A higher ratio results
in more added noise and more denoising steps, allowing a relatively higher impact of the new text prompt on the image. We
find that CClassNames (see caption for details) results in variations that incorporate the off-target classes. This effect is most
clear looking across the panels left to right in which objects belonging to off-target classes (an airplane and a train) become
more prominent. These qualitative results imply that this kind of prompt modifies the latent representation to incorporate
information about off-target classes, potentially making the downstream task more difficult. In contrast, using the BLIP
prompt changes the image, but the semantics (position of objects, classes present) of the image variation are significantly
closer to the original. These results suggest a mechanism for how off-target classes may impact our vision models. We
quantitatively measure this effect using a fully trained Oracle model in the following section.

Quantitative effect of CClassNames on Oracle model. To quantify the impact of the off-target classes on the down-
stream vision task, we measure the averaged pixel-wise scores (normalized via Softmax) per class when passing the
CClassNames to the Oracle segmentation model for Pascal VOC 2012 (Fig. S2). We compare this to the original oracle prompt.
We find that including the off-target prompts significantly increases the probability of a pixel being misclassified as one of
the semantically nearby off-target classes. For example, if the original image contains a cow, including the words dog and
sheep, it significantly raises the probability of misclassifying the pixels belonging to the cow as pixels belonging to a dog or
a sheep. These results indicate that the task-specific head picks up the effect of off-target classes and is incorporated into the
output.

5 10 15 20 25 30 35 40 45

Class  
Names

BLIP

De-noising steps

Figure S1. Qualitative image-to-image variation. An untrained stable diffusion model is passed an image to perform image-to-image
variation. The number of denoising steps conducted increases from left to right (5 to 45 out of a total of 50). On the top row, we pass all the
class names in Pascal VOC 2012: “background airplane bicycle bird boat bottle bus car cat chair cow dining table dog horse motorcycle
person potted plant sheep sofa train television”. In the bottom row we pass the BLIP caption “a bird and a dog”.
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Figure S2. Normalized scores averaged over pixels on Pascal VOC 2012 for an oracle-trained model when receiving either present class
names (top) or all class names (bottom).
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B. Additional Results

Method 4K Iters 8K Iters

mIoUss mIoUms mIoUss mIoUms

VPDA32 [49] 43.1 44.2 48.7 49.5
VPD(R) 42.6 43.6 49.2 50.4
VPD(LS) 45.0 45.8 50.5 51.1
TADP-20 (Ours) 50.2 50.9 52.8 54.1
TADP(TA)-20 (Ours) 49.9 50.7 52.7 53.4

Table S1. Semantic segmentation fast schedule. Our method has a large advantage over prior work on the fast schedule with significantly
better performance in both the single-scale and multi-scale evaluations for 4k and 8k iterations.

Recall

Pr
ec

is
io

n

0.50 0.75 1.00

0.
50 49.53 52.00 55.22

0.
75 49.17 51.46 58.62

1.
00 50.20 54.82 63.29

Table S2. ADE20K - Oracle Precision-Recall Ablations We modify the oracle captions by randomly adding or removing classes such
that the precision and recall are 0.50, 0.75, or 1.00. We train models on ADE20K on a fast schedule (4K) using these captions. The 4k
iteration oracle equivalent is highlighted in blue.
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B.1. Qualitative Examples

Figure S3. Ground truth examples of the tokenized datasets
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Figure S4. Textual inversion and Dreambooth tokens of Cityscapes to Dark Zurich

Figure S5. Textual inversion and Dreambooth tokens of VOC to Comic
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Figure S6. Textual inversion and Dreambooth tokens of VOC to Watercolor
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Figure S7. Predictions (top) and Ground Truth (bottom) visualizations for Pascal VOC2012.
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Figure S8. Predictions (top) and Ground Truth (bottom) visualizations for ADE20K.
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Figure S9. Predictions (top) and Ground Truth (bottom) visualizations for NYUv2 Depth.
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C. Implementation Details
In order to isolate the effects of our text-image alignment method, we ensure our model setup follows prior work precisely.
Following VPD [49], we jointly train the task-specific head and the diffusion backbone. The learning rate of the backbone
is set to 1/10 the learning rate of the head to preserve the benefits of pre-training better. We describe the different tasks by
describing H and LH . We use an FPN [23] head with a cross-entropy loss for segmentation. We use the same convolutional
head used in VPD for monocular depth estimation with a Scale-Invariant loss [11]. For object detection, we use a Faster-
RCNN head with the standard Faster-RCNN loss [32]1. Further details of the training setup can be found in Tab. C.1 and
Sec. C. In our single-domain tables, we include our reproduction of VPD, denoted with a (R). We compute our relative gains
with our reproduced numbers, with the same seed for all experiments.

Table C.1. Single-Domain Hyperparameters

Hyperparameter Value
Learning Rate 0.00008
Batch Size 2
Optimizer AdamW
Weight Decay 0.005
Warmup Iters 1500
Warmup Ratio 1e− 6
Unet Learning Rate Scale 0.01
Training Steps 80000

(a) ADE20k - full schedule

Hyperparameter Value
Learning Rate 0.00016
Batch Size 2
Optimizer AdamW
Weight Decay 0.005
Warmup Iters 150
Warmup Ratio 1e− 6
Unet Learning Rate Scale 0.01
Training Steps 8000

(b) ADE20k - fast schedule 8k

Hyperparameter Value
Learning Rate 0.00016
Batch Size 2
Optimizer AdamW
Weight Decay 0.005
Warmup Iters 75
Warmup Ratio 1e− 6
Unet Learning Rate Scale 0.01
Training Steps 4000

(c) ADE20k - fast schedule 4k

Hyperparameter Value
Learning Rate 5e− 4
Batch Size 3
Optimizer AdamW
Weight Decay 0.1
Layer Decay 0.9
Epochs 25
Drop Path Rate 0.9

(d) NYUv2

Hyperparameter Value
Learning Rate 0.00001
Batch Size 2
Gradient Accumulation 4
Epochs 15
Optimizer AdamW
Weight Decay 0.01

(e) Pascal VOC

1Object detection was not explored in VPD.
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Hyperparameter Value
Learning Rate 0.00008
Batch Size 2
Optimizer AdamW
Weight Decay 0.005
Warmup Iters 1500
Warmup Ratio 1e− 6
Unet Learning Rate Scale 0.01
Training Steps 40000

(a) Cross-Domain Hyperparameters

(b) Cityscapes → Dark Zurich & NightTime Driving

Hyperparameter Value
Learning Rate 0.00001
Batch Size 2
Epochs 100
Optimizer AdamW
Weight Decay 0.01
Learning Rate Schedule Lambda

(c) Pascal VOC → Watercolor & Comic

Hyperparameter Value
Prior Preservation Cls Images 200
Learning Rate 5e− 6
Training Steps 1000

(d) Dreambooth Hyperparameters

Hyperparameter Value
Steps 3000
Learning Rate 5.0e− 04
Batch Size 1
Gradient Accumulation 4

(e) Textual Inversion Hyperparameters
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C.1. Model personalization

For textual inversion, we use 500 images from DZ-train and 5 images for W2K and C2K and train all tokens for 1000 steps.
We use a constant learning rate scheduler with a learning rate of 5e − 4 and no warmup. For Dreambooth, we use the same
images as in textual inversion but train the model for 500 steps (DZ) steps or 1000 steps (W2K and C2K). We use a learning
rate of 2e− 6 with a constant learning rate scheduler and no warmup. We use no prior preservation loss.
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