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A Additional Experiments

A.1 Controlling for spurious correlates of ‘number’

One may be concerned that image properties other than the abstraction of ‘object number’
may be driving the quantity estimate. Indeed, confound variables , such as the count of
pixels that are not black, are correlated with object number and might play a role in the
model’s ability to estimate the number of objects in the scene.

We controlled for this hypothesis by exploiting the natural variability of our test set
images. We postulated that overall brightness, the area of the envelope of the objects in the
image, and total pixel area of the objects would be good candidates as confound variables
that might affect estimation.

To explore this possibility we analyzed close-call relative estimate tasks (e.g. 16 vs 18
objects), where errors are frequent both for our model and for human subjects, and, while
holding the numbers of objects constant in the two scenes, we studied the behavior of error
rates as a function of fluctuations in the confound variables. One would expect more errors
when comparing image pairs where quantities that typically correlate with the number of
objects are anticorrelated in the specific example (Fig. S1). Conversely, one would expect
lower error rates when the confound variables are positively correlated with number.

In Fig. S2 we plotted error rates vs each one of the confound variables. As is clear
from the figure, we could not find large systematic biases even for extreme variations in the
confound variables. In conclusion, we are unable to construct a convincing argument that
any of the confound variables we studied is strongly implicated in the estimate of quantity.
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Figure S1: Sample images where covariates are anticorrelated with number.
Examples of test images used in the experiments shown in Figure S2. In these examples
the change in numerosity is anticorrelated with the three covariates we study (one covariate
per row). The number below each plot shows the fractional difference from the value of the
covariate in the reference image (center column). For example, in the top left, there is a
37.1% increase in average image intensity when compared to the intensity in the reference
image (center column). In the last row, the scene with 18 objects has a smaller convex hull
than the corresponding scenes with 14 and 16 objects. Our model correctly classifies all
these examples in relative numerosity judgements (left column compared to center and right
column compared to center). For each row, from the lowest numerosity to the highest, the
model predicts a perceived numerosity of 12.65, 14.91, and 15.61 (Intensity); 13.66, 13.87,
15.68 (Area); 12.65, 14.88, 15.92 (Convex Hull). As explained in Figure 5B, perceived
numerosity generally slightly underestimates the true numerosity and is not necessarily an
integer value.
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Figure S2: Effects of covariates of numerosity. Three covariates of the number of
objects in the scene are explored for possible influence on our model’s estimate of numeros-
ity. These are average image intensity (left column), the sum of the areas of the objects
(middle column), and the area of the objects’ convex hull (right column). Each plot
shows the error rates in a relative quantity discrimination task like the one in Figure 5A.
For each plot we chose a reference image containing respectively 3, 9, 16 and 24 objects (rows
of the figure) and had our model judge relative numerosity w.r. to test images containing a
different but similar number of objects (indicated in the legend and associated with colors).
We used 4650 test images, 150 images per test number per condition. Given the stochastic
nature of the images, the covariates vary over a wide range for each number of objects (see
Fig. S1). For each number of objects, we plot the model’s error rates (y axis) as a function
of the value of the covariate quantity (x axis) which is expressed as fractional difference
from the reference image (the values are binned). Shadows display 95% Bayesian confidence
intervals (N > 100). Horizontal error lines indicate no correlation of numerosity estimation
with the covariate quantity. A few lines have slopes that differ slightly from zero indicating
a possible correlation. However, some of the slopes indicate a negative correlation (i.e. the
better the signal, the higher the error rate). From this evidence it is difficult to conclude
that that the model is exploiting anything but ‘number’ to estimate numerosity.
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A.2 Interpreting the Embedding Space
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Figure S3: The embedding dimension effects on error. Classification errors for Model
B, averaged over the number of items in the scene (0 - 3) are plotted as a function of the
dimension of the embedding (a free parameter in our model). Since the effect is minimal we
arbitrarily picked a dimension of two for ease of visualization (Figs. 4, S4). The shadows
show 95% Bayesian confidence intervals (287 ≤ N ≤ 355).
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Figure S4: Embeddings with topology for Model A and Model B. A close-up look at
the embedding space within the training limit. The left side are plots from Model A and the right
side from Model B. (A), (B) Unsupervised clustering is performed on the embedding space. Each
embedding is colored by it’s cluster. Each cluster A0 - D0 correspond to images with numerosities
0 - 3. The clusters are well-separated. The “zero” clusters, for both Model A and Model B, are
immediately recognizable as they have no variance (orange dot). As numerosity increases, Model
A clusters remain well-separated, whereas Model B clusters begin to come closer to each other.
We also overlay a topology from the training actions (P), (T), (S). Blue arrows joining a pair of
points represent take actions, red arrows represent put actions. Arrows representing shake actions
are under the point clouds and are mostly not visible. (C), (D) Distances between pairs of points
in the embedding space are histogrammed by action. The histograms show the clearly different
distribution for shake actions in comparison to take and put actions. Furthermore, the overlap
between shake and non-shake actions is smaller for Model A than Model B, explaining the higher
performance in action classification for Model A.
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A.3 Varying Training Limit
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Figure S5: Effect of modifying the training limit. In order to explore the effect of
the number of objects during training, we trained the network to predict actions using a
maximum of 3, 5, or 8 objects with images like those in dataset B (Fig. 2B). We tested
the network on 8 objects. Each panels shows errors on the training task and are in the same
style as Figure 3. The line-breaks and dashed lines mark where the training limit ends
and the testing region begins, and the legend shows the training limit in parentheses. The
shadows provide 95% confidence intervals (287 ≤ N ≤ 355). As expected, the error is lower
when the training limit is higher.

7



A.4 Reproducibility of Results
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Figure S6: Miscellaneous embedding spaces (A) Embedding space for the network
trained on dataset B, with up to five objects. (B) Embedding space for the network trained
on dataset B, with up to eight objects. (C) Embedding spaces for 30 different random ini-
tializations. We repeated the training procedure 30 times on different random initializations
of dataset B, with a training limit of 3 objects. Qualitatively, 21 embedding spaces look like
a straight line, six initializations present a slight kink in the line, and three instances either
present a large kink or two kinks. The linear approximation error (Methods - Interpreting
the Embedding Space) is provided above each subplot and measures the approximate de-
viation from a purely linear model. An error below 4% predicts an approximately linear
embedding line.
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A.5 Restricting Dataset Variability

In this experiment, we explore if the randomness in object representation is necessary for
the representation discovered in Model B. We restrict the randomness by jittering certain
properties of the objects. We find that jitter is sufficient to produce models with the same
key properties as in Model B, however, they are more sensitive to the initial seed. We refer
to this dataset as the jitter dataset and model’s trained by this dataset as Jitter Models.

S P S T

Figure S7: In this dataset, we restrict the change in size and contrast an object may
undergo due to an action. After each action, the size (diagonal) of an object will be allowed
to jitter by up to 3 pixels and the contrast by ±0.02% of the maximum contrast. We find that
these small perturbations in object representations are sufficient to recreate similar results
to those seen with Model B.
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Figure S8: We find that the important properties of the Model B representation arise with
Jitter Models. The model representations are linear, monotonic, with the early numbers
easily separable. We set the minimum cluster size to 30 (HDBSCAN), in order to produce
the most concise plots. Note the Jitter Model representations are more sensitive to minimum
cluster size.
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Figure S9: We vary the initial seed to determine how reproducible the results are. We find
model’s trained with the jitter dataset learn mostly linear representations, however, certain
seeds do result in large kinks.
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A.6 Imprecise Action Sizes

In this experiment, we explore if the precision of the action sizes (the agent always performing
an action on a single object) is necessary for the properties of interest to emerge. We find
that while precise actions help in building distinct clusters in the subitization range, it is not
necessary. We refer to this dataset as the imprecise actions dataset and model’s trained by
this dataset as Imprecise Action Models.

P S P T

Figure S10: In this dataset, we allow the number of actions taken or placed during an
action to be 0-3 (limited by the number of objects in the visual scene). This dataset mimics
a situation in which the agent is imprecise with their actions and does not always select one
object. The object’s size and contrast are randomized between actions (like in dataset B).
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Figure S11: We find that the important properties of the Model B representation arise
with Imprecise Action Models. The model representations are linear, monotonic, with the
early numbers easily separable. However, the separability of the early clusters is rougher
than with precise action sizes. We set the minimum cluster size to 50 (HDBSCAN), in order
to produce the most concise plots. Note the Imprecise Action Model representations are
more sensitive to minimum cluster size.

13



Error: 0.7% Error: 0.2% Error: 1.8% Error: 0.1%

Error: 0.6% Error: 0.8% Error: 0.4% Error: 0.0%

Figure S12: We vary the initial seed to determine how reproducible the results are. We
find model’s trained with the imprecise action sizes learn mostly linear representations.
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B Dataset Statistics
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Figure S13: Training set statistics. (A) In dataset A (Fig. 2A) objects have the
same size and contrast. Thus, the number of objects predicts the mean image intensity and
vice-versa. (B) Objects in dataset B (Fig. 2B) have variable sizes and variable contrast,
thus mean image intensity is not sufficient to predict the number of objects. (C) Objects in
the jitter datasets (Fig. S10) have a restricted, but variable size and contrast. We see the
image statistics are similar to that of dataset B, but have a smaller amount of variability.
(D) Objects in the imprecise actions datasets (Fig. S10) have random numbers of objects
manipulated in an action. We see the image statistics are effectively the same as that of
dataset B.
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C Network Details
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Figure S14: Detailed diagram of the network structure.
(A) The feature extraction / embedding network. The gray layers are pre-trained on Im-
ageNet [48, 24] and remain fixed throughout the course of training. The orange layers are
randomly seeded and trained simultaneously with the classifier in (B). The details of the
layer are described within the brackets. For example, [11x11 - s4, 64] is an 11x11 kernel
with a stride of 4 and 64 filters. During a training step, the embedding network accepts an
image (xt) of the visual scene and generates a lower-dimensional feature embedding (zt) of
the visual scene. An action: (P), (T), or (S) modifies the visual scene and the “after” image
(xt+1) is passed through the embedding network as well. The outputs of the embedding net-
work, (zt) and (zt+1) are treated as inputs to the action classification network. The shared
embedding network is trained together with the classifier (B), in a Siamese configuration.
(B) The action classification network is a 2-layer classifier network and is composed of two
fully connected layers with a log-softmax transformation on the output. The input is the
representation of the visual scene before and after an action is performed. The negative log-
likelihood (NLL) loss function is used to train both the action classification network and the
embedding network simultaneously. An overview of the entire training paradigm is shown
in Figure 1.
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